MiR-499 Regulates Cell Proliferation and Apoptosis during Late-Stage Cardiac Differentiation via Sox6 and Cyclin D1
نویسندگان
چکیده
BACKGROUND MiR-499 is a cardiac-abundant miRNA. However, the biological functions of miR-499 in differentiated cardiomyocytes or in the cardiomyocyte differentiation process is not very clear. Sox6 is believed to be one of its targets, and is also believed to play a role in cardiac differentiation. Therefore, our aim was to investigate the association between Sox6 and miR-499 during cardiac differentiation. METHODOLOGY/PRINCIPAL FINDINGS Using a well-established in vitro cardiomyocyte differentiation system, mouse P19CL6 cells, we found that miR-499 was highly expressed in the late stage of cardiac differentiation. In cells stably transfected with miR-499 (P-499 cells), it was found that miR-499 could promote the differentiation into cardiomyocytes at the early stage of cardiac differentiation. Notably, cell viability assay, EdU incorporation assay, and cell cycle profile analysis all showed that the P-499 cells displayed the distinctive feature of hyperplastic growth. Further investigation confirmed that miR-499 could promote neonatal rat cardiomyocyte proliferation. MiR-499 knock-down enhanced apoptosis in the late differentiation stage in P19CL6 cells, but overexpression of miR-499 resulted in a decrease in the apoptosis rate. Sox6 was identified as a direct target of miR-499 and its expression was detected from day 8 or day 10 of cardiac differentiation of P19CL6 cells. Sox6 played a role in cell viability, inhibited cell proliferation and promoted cell apoptosis in P19CL6 cells and cardiomyocytes. The overexpression of Sox6 could reverse the proliferation and anti-apoptosis effects of miR-499. It was also found that miR-499 might exert its function by regulating cyclin D1 via its influence on Sox6. CONCLUSIONS/SIGNIFICANCE miR-499 probably regulates the proliferation and apoptosis of P19CL6 cells in the late stage of cardiac differentiation via its effects on Sox6 and cyclin D1.
منابع مشابه
MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells.
OBJECTIVE To improve regeneration of the injured myocardium, it is necessary to enhance the intrinsic capacity of the heart to regenerate itself and/or replace the damaged tissue by cell transplantation. Cardiomyocyte progenitor cells (CMPCs) are a promising cell population, easily expanded and efficiently differentiated into beating cardiomyocytes. Recently, several studies have demonstrated t...
متن کاملMiR-15b Targets Cyclin D1 to Regulate Proliferation and Apoptosis in Glioma Cells
AIM To investigate the role and mechanism of miR-15b in the proliferation and apoptosis of glioma. METHODS The miR-15b mimics were transfected into human glioma cells to upregulate the miR-15b expression. Cyclin D1 was determined by both western blotting analysis and luciferase reporter assay. Methylthiazol tetrazolium (MTT) and flow cytometry were employed to detect the cell proliferation, c...
متن کاملMicroRNA-365 Inhibits Vascular Smooth Muscle Cell Proliferation through Targeting Cyclin D1
MicroRNA-365 (miR-365) plays crucial roles in regulating cell proliferation, apoptosis and differentiation in various cell types. However, its function in vascular smooth muscle cells (VSMCs) is largely unknown. In our study, we found miR-365 was highly expressed in adult rat carotid arteries, but was significantly decreased in rat carotid arteries after balloon injury, a process involving neoi...
متن کاملMicroRNA-766 targeting regulation of SOX6 expression promoted cell proliferation of human colorectal cancer
MicroRNAs (miRNAs) have emerged as important regulators of cancer-cell biological processes. Previous studies have shown that miR-766 plays an important role in a variety of biological processes in various human cancers. However, the underlying mechanism of miR-766 in colorectal cancer (CRC) cells remains unclear. In this study, we investigated miR-766's role in CRC cell proliferation. Polymera...
متن کاملHeart Failure Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism
Background—Cardiac stem cells (CSCs) delivered to the infarcted heart generate a large number of small fetal-neonatal cardiomyocytes that fail to acquire the differentiated phenotype. However, the interaction of CSCs with postmitotic myocytes results in the formation of cells with adult characteristics. Methods and Results—On the basis of results of in vitro and in vivo assays, we report that t...
متن کامل